HeyElsa —The Crypto Agent
Layer (Litepaper)

Elsa Overview

TL;DR
Elsa is the crypto agent layer that turns intent - action.

Users (and partners) issue goals; a multi-agent system plans, validates, and
executes across chains safely, autonomously, and at scale.

v Overview (What is Elsa?)

Elsa makes DeFi feel like typing a message.

Three surfaces, one engine:

« Copilot (B2C): Chat to swap, bridge, stake, hedge, farm, set
automations.

« Widget & SDK (B2B): Embed “trade with Al" inside any wallet, dApp, or
content app.

o AgentOS: Build/host specialized agents on a shared Agent-to-Agent
(A2A) coordination bus.

v What this litepaper covers (Preview)

e Vision - Autonomous DeFi: From on-demand execution to self-driving
portfolio actions (take-profit, hedging, rebalancing, APY hopping).

o Multi-LLM Orchestration: Route tasks by complexity/latency to the right
model; verified, grounded outputs.

o A2A Communication Layer: Specialized agents coordinate, bid for
work, and share context.

» Execution & Safety: Simulation, guardrails, MEV-aware routing, receipts,
and proofs.

HeyElsa —The Crypto Agent Layer (Litepaper)

Cognitive Cache: Privacy-preserving memory for personalization
without leakage.

Build on Elsa: Agent OS, SDKs, embeddable widget; host your own
agents and monetize.

v Technical Architecture (Layered)

Bottom - Top

1.

Data & Grounding

On-chain state (nodes/indexers), oracles, curated KB; freshness checks
& anomaly detection.

. Execution Layer

Pre-audited scripts, simulation, route selection (DEX/bridge meta-
routers), MEV-safe submission, idempotency, receipts, telemetry.

. Agent Layer

Composable specialists (Swap, Bridge, Yield, Risk/Hedge, Perps, NFT,
Sniper, Alerts). First-party + hosted third-party agents with scoped
permissions & SLAs.

. A2A Bus (Coordination)

Pub/sub messaging, contract-net bidding, plan aggregation, reputation,
fairness scheduling.

. Orchestration (Multi-LLM + Planner)

Task classification = model routing (small/mid/large). Strategy
synthesis, constraint solving, fallback/hedged inference.

. Intent Layer (NL Interface)

Parsing, slot-filling, constraint capture, policy hints, multi-turn context &
disambiguation.

. Safety & Policy

Simulation gates, allow/deny lists, max-notional limits, geo/KYC hooks,
verified inference (zkTLS/MPC-TLS).

. Cognitive Cache

TEE-backed private memory of preferences, behaviors, outcomes;
accelerates planning & personalization.

HeyElsa —The Crypto Agent Layer (Litepaper)

9. Observability

Traces, metrics, audit logs, anomaly detection, circuit breakers.

How the three surfaces map onto the stack
o Copilot: Intent - Orchestration - A2A > Agents > Execution
(Safety, Cache, Grounding applied throughout)

» Widget & SDK: Partners attach at Intent/Orchestration with their context;
reuse the same A2A, Agents, Execution.

o Agent OS: Lives inside Agent/A2A layers; provides SDKs, sandboxing,
manifests, reputation, and monetization for hosted agents.

Layers, Policies & Safety

Intent Layer

Role: Natural-language interface that converts user input into machine-
readable intents with constraints.

Responsibilities

e Parse NL (text/voice) into structured Intent{verb, objects[], params{}, constraints{},

riskHint} .

o Slot filling (amounts, assets, chains, time horizons, targets) with uncertainty
scores.

e Constraint capture: risk limits (max slippage, LTV caps), compliance
(geo/KYC), budgets, deadlines.

o Context injection from Cognitive Cache (prefs, past approvals, favorite
chains/pools).

Inputs > Outputs

e In: NL prompt, wallet context, session policy, cache profile.

e Out: Validated intent JSON + confidence; missing-slot prompts if needed.
Key Components

e NER + typed entity registry (tokens, chains, protocols).

HeyElsa —The Crypto Agent Layer (Litepaper)

e Canonical schema & versioning (e.g., vz.intentswap , v2.intent.yield.optimize).
e Guardrails (regex, allow-lists, refusal rules for unsafe verbs).
Failure Modes / Handling
e Low confidence - ask clarifying question.
e Ambiguous asset/chain = propose top-3 disambiguations.

e Out-of-policy verb - safe decline with rationale.

Orchestration Layer

Role: Decides how to satisfy an intent: routes to the right model(s), synthesizes
a plan, assigns agents, and sets up A2A messaging.

Responsibilities
o Task classification (complexity, domain, required latency, risk class).
e Multi-LLM routing (small/mid/large or toolformer) with cost/latency budget.

e Plan synthesis: decompose into steps with pre/post-conditions and
success metrics.

o Agent assignment & capability matching; create A2A contracts for
cooperation.

Inputs > Outputs
e In: Intent JSON, cache profile, live data pointers (oracles/indexers).
e Qut: Plan{steps(], dependenciesl], SLAs, fallbackPaths[], evalFns[]} + agent roster.
Key Components

o Classifier features: task complexity, risk class RO-R3, latency budget,
chain/protocol access, wallet approvals needed, MEV exposure,
statefulness needs.

e Routing policy (see section below).

« Planner (STRIPS-like) with constraint solver (fees, gas, liquidity, bridge
risk).

Failure Modes / Handling

e No feasible plan - return alternatives (cheaper chain, different pool).

HeyElsa —The Crypto Agent Layer (Litepaper)

e SLA breach predicted - downgrade model, simplify plan, or defer.

A2A Bus (Agent-to-Agent Communication)

Role: Contract-Net style coordination for multi-agent work; pub/sub plus
scheduling and reputation.

Responsibilities
e Matchmaking: broadcast sub-tasks; agents bid/commit with price/SLA.

e Reputation & scheduling: track success, latency, accuracy; prioritize reliable
agents.

» Message semantics: idempotent commands, retries, exactly-once task
receipts.

Key Components
U] TOpiCSZ swap.quote , bridge.route , stake.position , risk.nedge , perps.open, alerts.set .
L Message types: rfq, proposal , award, work.start, work.done , work.fail .

o Safety: per-task scopes, least-privilege creds, time-boxed leases.

Agent Layer
Role: Composable specialists that execute parts of a plan.
Core Agents

o Swap Agent: DEX quoting, split routes, slippage control.

o Bridge Agent: Route selection (risk/fee/time), proof checks, stuck-tx
recovery.

e Yield Agent: APY scan, IL/risk modeling, auto-compound, vault migrations.
» Risk/Hedge Agent: Perps/options, stop-loss/TP, delta hedging.

o Perps/NFT/Sniper/Alerts: Venue-specific execution, floor sweeps,
limit/cancel/IOC, event watchers.

Interfaces

o Capability manifests (supported chains, tokens, max notional, expected
latency).

o Deterministic simulation hooks for pre-trade checks.

HeyElsa —The Crypto Agent Layer (Litepaper)

o Telemetry contract: step outcome, gas used, PnL, confidence, anomalies.

Execution Layer
Role: Turns approved plans into on-chain transactions safely.
Responsibilities

o Pre-audited scripts per protocol (param-bounded).

e Transaction simulation (fork or RPC sim) with revert reason capture.

» Meta-routing: Ox/CoW/UniswapX/linch; bridge aggregators; batching.

o MEV safety: private relays, back-run protection, non-arb bundle rules.

» Settlement & receipt collation; retries with nonces/gas bumping.
Outputs

e ExecutionReport{txids[], status, receiptsl[], realizedSlippage, fees, proofs} .

Cognitive Cache
Role: Private memory for speed and personalization.
Contents
o Preferences (risk, fee sensitivity, favored chains/pools).
e Behavioral features (time-of-day activity, asset affinities).
o Allowances & trusted protocols.
o Summarized wallet history (positions, cost basis, PnL bands).
Controls
o TTLs & decay, user export/delete, per-scope consent, encryption at rest.
Benefits

» Fewer clarifications, better defaults, faster routing.

Safety Layer
Role: Proves what we know, enforces what we allow.

Grounding

HeyElsa —The Crypto Agent Layer (Litepaper)

e Live on-chain state (indexers/full nodes), oracles (prices/liquidity), curated
KB (audits, risk advisories).

o Every recommendation/check passes Groundingengine.validatel) .
Policy Engine

» Geo/KYC, protocol allow-lists, notional/risk caps, leverage ceilings,
counterparty filters.

Verified Inference

e zKTLS / MPC-TLS proof adapters for “this insight came from these sources
at time T" without exposing raw logs.

Simulation & Dry-Run

e Pre-execution sims with guard conditions and stop-if rules.

Observability

Role: Make intents—>actions traceable and operable.
What's tracked

e Traces with span IDs from intent parse - plan -> A2A - execution =
receipts.

e SLAs/SLOs per step (p50/p95 latency, success rate, cost).

» Audit logs for all policy decisions and escalations.

o Anomaly detection (stuck bridge, abnormal slippage, oracle drift).
Surfacing

e Operator dashboards, partner webhooks, user-visible receipts.

Classifier Features (expanded)
o Task complexity: single-step vs multi-leg, cross-chain, approvals required.

« Risk class (RO-R3): read-only - low-risk swap - leveraged/perps -
protocol-novel/high-risk.

o Latency budget: sub-second (quotes) to minutes (bridges) vs deferred
(rebalances).

HeyElsa —The Crypto Agent Layer (Litepaper)

o Chain access: wallet approvals, token allowances, supported
venues/bridges.

* Market context: volatility, liquidity depth, MEV risk bands.

o User profile: fee sensitivity, risk tolerance, preferred venues.

Routing Policy (multi-LLM)

» Fast / transactional (balances, prices, parameter extraction) - small
finetunes (low latency, tool use).

o Analytical (yield comparisons, pathfinding, risk scoring) = mid models
with tool-augmented RAG.

o Strategic / autonomous (multi-leg plans, portfolio mgmt, hedging) = large
models with planning + constraint solving.

o Cost/latency governors: per-request budgets; degrade gracefully under
load.

Grounding Pipeline

e Fetch: on-chain (nodes/indexers), oracles (price/liquidity), curated KB
(audits, risk lists).

o Validate: cross-source consistency checks, freshness thresholds, quorum
rules.

e Attach: include groundingref in every recommendation/action.

e Prove: optional zkTLS/MPC-TLS proof artifact for partner/user verification.

Verified Inference

» What: Cryptographic proofs that a model's answer was derived from stated
inputs and logs.

e How: Proxy TLS via zk/MPC adapter; store digest; emit verifiable receipt
with the response.

o Where used: High-stakes advice, partner compliance, dispute resolution.

Fallbacks & Hedging

HeyElsa —The Crypto Agent Layer (Litepaper)

e Model timeouts: reroute to smaller model; summarize; request user
confirmation if confidence < threshold.

o Execution hedging: secondary routes/venues; split orders; time-slice in
volatile markets.

e Dual-run critical plans: plan via large model, cross-check via mid model;
reconcile conflicts.

Example Intent - Action (concise)
1. User: “Bridge 2 ETH to Solana and stake for safest yield."
2. Intent Layer: intent.yield.optimize with amount=2 ETH , dstChain=Solana , risk=low .

3. Orchestration: classify r2, route mid/large model - plan: {swap? no,
bridge via Wormhole, stake Solana pool A}, SLAs.

A2A Bus: RFQs to Bridge Agent + Yield Agent; award best proposals.
Execution: simulate bridge + stake; private submit; collect receipts.
Safety: ground rates/APY; enforce policy caps; attach proof.

Observability: log trace; show user receipts + realized APY baseline.

® N o o »

. Cache: update prefs (Solana OK, low-risk yield).

Schemas (abridged)

Intent (v3)

"verb": "yield.optimize",

"objects": [{"asset":"ETH","amount":"2"}],

"params": {"dstChain":"solana","risk":"low"},
"constraints": {"maxSlippageBps":50,"deadlineSec":900},
"profileRef":"cache://user/123",
"policyScope":"retail.low",

"version":"v3"

Plan (v2)

HeyElsa —The Crypto Agent Layer (Litepaper)

{
"steps":[
{"id":"s1","type":"bridge","route":"wormhole","from":"ethereum","to":"sol
ana"},
{"id":"s2" "type":"stake","venue":"solend","asset":"SOL","policy":"lowRis
K"}
1,
"dependencies":[["s1","s2"]],
"sla":{"p95LatencyMs":30000},
"fallbacks":[{"on":"bridgeFail","route":"portal"}]

SLAs / SLOs (suggested)

e Intent parse p95 < 400ms; plan synth p95 < 1.5s (analytical), < 4s
(strategic).

e Quote freshness < 3s; simulation success > 99%; execution success >
98% (with retries).

o Max realized slippage = quoted + policy buffer (e.g., +15 bps).

o A2A task award latency p95 < 800ms; agent failure rate < 1% per 1k tasks.

Policy Defaults (retail tier)
o Max leverage 3x; LTV = 60%; single-venue exposure = 40% per action.
« Bridge preference: audited routes; fallback only with user confirm (R3).
e New protocol cool-down: require audit flag or manual review.

If you want, | can convert this into a Notion page export (as Markdown with
toggles) or wire it into your existing data room structure.

flowchart LR
[[Intent + Context] — C[Complexity Classifier]
C —|Low| M1[Small Finetune]
C —|Medium| M2[Mid Model]
C —|High| M3[Large Model]

HeyElsa —The Crypto Agent Layer (Litepaper)

M1 — G[Grounding Checks]
M2 — G

M3 — G

G — P[Plan + Constraints]

Build once; get execution + safety + distribution.

SDKs: TypeScript/Python — intent schemas, on-chain connectors,
simulation, policy hooks.

Lifecycle: register - advertise capabilities - receive tasks - emit plan
fragments/quotes/tx payloads - execute - report outcomes.

Sandbox: per-agent runtime, quotas, scoped permissions (least privilege),
secrets isolation.

Scheduling: capability matching + live load + reputation.

A2A messaging: pub/sub topics (quote , plan, risk, exec, status) With signed
envelopes.

Agent Manifest (example)

name: yield-agent
version: 1.2.0
capabilities:
- chain: |[base, ethereum, solana
- actions: [scan_yield, allocate, compound, exit
sla: { p95_latency_ms: 1000, success_rate: 0.995
cost_model: { pricing: per-plan + per-exec
permissions: { scopes: [simulation.read, protocols.write:yield, quotes.read

Why: multi-specialist coordination for complex workflows.

Protocol
o Envelope: signed JSON (msg_id , parent_id , topic , payload , ttl, sig).

o Transport: NATS/Kafka-class pub/sub (durable streams), secure WS
for interactive co-planning.

o Contract Net: broadcast CFP; agents bid; coordinator selects on
price/latency/reputation.

HeyElsa —The Crypto Agent Layer (Litepaper)

n

o Consensus: weighted voting on conflicting plans (reputation x recency
x scope-fit).

o ldempotency: (intent id, step_id) .
e Trust & Reputation

o Metrics: accuracy, timeliness, slippage vs quote, failures, user
feedback.

o Decay to favor recency; quarantine/slash malicious or failing agents.

sequenceDiagram

Coordinator->>Agents:* Call for Proposals (intent, constraints)
Agents— >Coordinator: Quotes (cost/latency/risk)
Coordinator->>Agents: Award + Plan fragments
Agents->>Execution: Submit executable steps

Execution— >Coordinator: Receipts + Telemetry
Coordinator— >Agents: Reputation update

o Pathfinding: Ox / CoWSwap / UniswapX / Tlinch meta-routing; bridge
selector; order-splitting.

e Simulation: dry-run with pool state; bounds checks (minOut, gas ceiling,
deadlines).

o MEV: private relays/bundles; price impact caps; back-run detection.
e Accounts: AA/ERC-4337; session keys; MPC/HW wallet support.

» Risk: dynamic slippage; conditional stops; liquidation buffers.

e Receipts: tx hash, logs, realized slippage, fees, route, quotes vs fills.

o Idempotency: replay-safe by (user id, intent_id, step_id) .

flowchart LR
Plan — S1[Simulate On-chain State]
S1 — S2[MEV Risk Check]
S2 — S3|[Limits: Slippage, Gas, Notional]
S3 —|Pass| TX[Submit Tx via Private Route]
S3 —>|Fail| ERR[Abort + Explain]

HeyElsa —The Crypto Agent Layer (Litepaper)

12

o Content: prompt history, wallet behaviors (chains, protocols, risk), strategy
outcomes.

e Store: vector DB (embeddings) + key/value features.
o Use: disambiguation, defaults, constraint inference, few-shot exemplars.

o Privacy: TEE-backed; per-user scope; opt-in research sharing; differential
privacy on aggregates.

Excalidraw brief: circular cache feeding router with “known preferences”, “risk
profile”, “recent strategies”.

e Sources: on-chain nodes/indexers; oracles (price/TVL); curated KB
(audits/safety).

» Validators: cross-source reconciliation, freshness, anomaly detection.
e Policy engine: denylist, chain allow-lists, max notional, KYC/geo hooks.
e Proofs: zkTLS/MPC-TLS adapters to prove gateway authenticity.

o Explainers: every block/reject returns a human-readable reason.
 Modes: execute now; schedule; autopilot (bounded by policies).

o Features: swaps, bridging, staking, perps (roadmap), copy trading,
prediction markets, yield optimizer, sniping/limits, NFT trade & limit.

o Personalization: risk bands, chain prefs, fee sensitivity, favorites.

e Outcomes: ~$100M total volume; 30M+ prompts; higher retention via
context.

Widget (drop-in)
e Embed: <iframe src="https://app.heyelsa.ai/widget?partner=XYZ&theme=dark" />
o Prefill context (asset/chain/flow)
o Callbacks: onQuote, onTx, onError, onComplete
SDK (agents & flows)
e Intent schema, plan API, simulation, submitTx, receipts
» Policy templates, sandbox scopes, quota mgmt

e Theme/tone overrides

HeyElsa —The Crypto Agent Layer (Litepaper)

import { Elsa } from "@elsa/sdk"
const elsa = new Elsa({ apiKey: process.env.ELSA_KEY

const intent =
type: "yield.optimize"
amount: "500"
asset: "USDC"
constraints: { chain: "base", maxSlippageBps: 30

const plan = await elsa.plan(intent
await elsa.simulate(plan.id
const receipt = await elsa.execute(plan.id

» Verification: conformance tests (correctness/latency), replay suite,
adversarial sims.

e Runtime: CPU/mem quotas, topic rate limits, cost ceilings.

« Monetization: per-plan/per-exec pricing (USDC/$ELSA), rev share on
partner volume.

e Metrics: intent->plan->exec funnel, p50/p95, slippage distribution, failure
taxonomy, per-agent SLOs.

» Tracing: distributed trace IDs across router/agents/execution.

o Alerts: anomaly detection (slippage spikes, oracle drift), circuit breakers.
e Audit: immutable logs for compliance & partners.

o Wallets: MPC + HW; ERC-4337 AA; session keys with ceilings.

o Exec: allow-list bridges/routers; private flow; expiring quotes; gas caps;
reorg-aware confirmations.

e Inference proofs: zkTLS/MPC-TLS verifier endpoints.
« Data privacy: encryption at rest; TEE for cognitive cache; opt-in telemetry.
e Router: p95 < 300ms (low/med), < 900ms (high).

e Plan-Simulate: p95 < 1.2s (single-chain), < 2.5s (cross-chain).

HeyElsa —The Crypto Agent Layer (Litepaper) 14

e Quote accuracy: = 99.0% within bounds.
» Execution success: = 99.2% after retries.
e Throughput: 200-500 intents/sec (horizontally scalable).

More users - richer prompts & outcomes - better finetunes - higher
plan/exec quality = more partner conversion - more users.

flowchart LR
U[Users & Partners] — D[Prompts + Outcomes Data]
D — TI[Finetuning + Policy Updates]
T — Q[Higher Plan/Exec Quality]
Q — A[Adoption & Volume]
A—U

Retail: “"Bridge 2 ETH to Solana and stake best yield"

sequenceDiagram

User->>Copilot: "Bridge 2 ETH to Solana and stake best yield"
Copilot->Router: classify + route (med/high)

Router- >Planner: multi-step strategy

Planner->A2A: call for proposals (bridge,yield)
BridgeAgent— >Planner: quotes + routes

YieldAgent— >Planner: APY + risk + lockup

Planner- >Safety: simulate + policy + oracle checks
Safety— >Planner: OK w/ constraints

Planner- >Execution: submit (private relay)
Execution->>Chains: txs

Chains— >Execution: receipts

Execution—> >Copilot: confirmations + proofs + explainer

iFrame Widget
1. Paste snippet, set partner key, theme/tokens/chains.
2. Subscribe to callbacks for analytics/incentives.

SDK

1. Install, create intents, plan/simulate/execute, display receipts.

2. Apply policy templates (max notional, allow-listed routers, geo limits).

HeyElsa —The Crypto Agent Layer (Litepaper)

15

Host Your Agent
1. Publish manifest, pass conformance tests, get sandbox scopes.

2. Receive A2A tasks; earn per plan/exec.

POST /v1/intents

"type":"swap"

"user":"0x..."

"params":{"sell":"ETH" "buy":"USDC" "amount":"1.0" "chain":"base"
"constraints":{"maxSlippageBps":30,"deadlineSec":90

GET /v1/plans/{intentld
returns steps, quotes, risk, agents, policy gates

POST /v1/execute/{planid
returns tx receipts, route, realized slippage, gas

mutation {
createlntent(input:{
type: YIELD_ALLOCATE,
asset: "USDC",
amount: "500",
chain: BASE
}) {id status }
}

o System Layers: rectangle bands for Intent, Orchestration, Agents,
Execution; sidecar “Safety”; circle “"Cognitive Cache”.

o A2A Market: central “Coordinator” node; multiple Agents bid; arrows for
CFP/quotes/award.

« Safety Gates: funnel: Plan - Sim - Policy -» MEV - Submit.

e Flywheel: circular loop of Users - Data - Finetune - Quality - Adoption.

HeyElsa —The Crypto Agent Layer (Litepaper)

Problem
Crypto is powerful but unusable at scale.
e Too many chains, tools, and workflows
o High cognitive load for basic actions
e Manual execution leads to poor outcomes
o Automation exists, but isn't accessible

Most users don't need more protocols — they need better execution.

Solution
Elsa introduces an Al-first execution layer.
Users express intent.

Elsa executes it.

Natural language - onchain actions

Optimized routing across chains and protocols

Al agents manage trading, yield, and risk

Automation without sacrificing control

Elsa abstracts complexity while preserving transparency.

Product Stack

B2C: Elsa Copilot

Swap, bridge, stake, borrow

Perpetual trading and copy trading

Yield optimization and portfolio automation

Smart alerts and agent-driven execution

Untitled

B2B: Elsa Infrastructure
o Widget and iframe integrations
o SDKs for apps and wallets
» Agent execution APIs

e Revenue-sharing distribution model

Business Model
Elsa is usage-driven, not speculation-driven.
Revenue sources:

» Transaction fees on execution

o Al agent commissions

e B2B SDK and widget licensing

» Inference and execution fees

As execution volume grows, revenue scales naturally.

Token Overview

Parameter Value

Token $ELSA

Total Supply 1,000,000,000
Decimals 18

Network Base

$ELSA is a utility token, powering execution, inference, and access.

Utility of SELSA

$ELSA is the economic backbone of Elsa.

Fee Discounts

Untitled

e Reduced execution fees for holders and stakers

Feature Access

e Unlock premium agents (copy trading, sniping, cognitive cache)

Gas Abstraction

« Gas-free transactions within Elsa using $ELSA

Inference & Execution
e Al model inference
e Onchain agent execution
o B2B SDK and widget usage

Utility scales with real platform usage.

Token Allocation & Vesting

Category Allocation Vesting

Team 7% 12m cliff, 24m linear
Foundation 34.490% 20% TGE, 10m cliff, 24m linear
Community 40% 20% TGE, 48m linear
Pre-Seed 1.4% 12m cliff, 24m linear

Seed 9.11% 12m cliff, 24m linear

Liquidity 8% 100% at TGE

Community-first allocation with long-term alignment.

Roadmap Snapshot

Up to Q2 2025 (Completed)
e Public beta live

o Core DeFi Copilot launched

Untitled

$1IM+ daily volume
300K+ MAUSs, 700K+ signups

Monetization enabled

Q3-Q4 2025

Perpetuals via Hyperliquid

Copy trading and sniping agents
Yield vaults and automation
Mobile apps (i0OS & Android)
Multi-agent orchestration
$ELSA Token Generation Event

Token utility activation

2026

Fully autonomous portfolio management
Tokenized crypto indices

Agent Builder SDK

Automated strategy marketplace
Cross-chain execution kits

B2B scale across wallets and apps

Design Philosophy

Untitled

Execution > speculation
Utility before governance
Demand-backed token economics

Al that acts, not just advises

Elsa is built for scale, automation, and real usage.

Untitled

