
HeyElsa —The Crypto Agent
Layer (Litepaper)

Elsa Overview
TL;DR

Elsa is the crypto agent layer that turns intent → action.

Users (and partners) issue goals; a multi-agent system plans, validates, and
executes across chains safely, autonomously, and at scale.

Overview What is Elsa?
Elsa makes DeFi feel like typing a message.

Three surfaces, one engine:

Copilot B2C Chat to swap, bridge, stake, hedge, farm, set
automations.

Widget & SDK B2B Embed “trade with AIˮ inside any wallet, dApp, or
content app.

AgentOS Build/host specialized agents on a shared Agent-to-Agent
A2A coordination bus.

What this litepaper covers Preview)
Vision  Autonomous DeFi: From on-demand execution to self-driving
portfolio actions (take-profit, hedging, rebalancing, APY hopping).

Multi-LLM Orchestration: Route tasks by complexity/latency to the right
model; verified, grounded outputs.

A2A Communication Layer: Specialized agents coordinate, bid for
work, and share context.

Execution & Safety: Simulation, guardrails, MEV-aware routing, receipts,
and proofs.

HeyElsa The Crypto Agent Layer  Litepaper) 1

Cognitive Cache: Privacy-preserving memory for personalization
without leakage.

Build on Elsa: Agent OS, SDKs, embeddable widget; host your own
agents and monetize.

Technical Architecture Layered)
Bottom  Top

 Data & Grounding

On-chain state (nodes/indexers), oracles, curated KB; freshness checks
& anomaly detection.

 Execution Layer

Pre-audited scripts, simulation, route selection DEX/bridge meta-
routers), MEV-safe submission, idempotency, receipts, telemetry.

 Agent Layer

Composable specialists Swap, Bridge, Yield, Risk/Hedge, Perps, NFT,
Sniper, Alerts). First-party + hosted third-party agents with scoped
permissions & SLAs.

 A2A Bus Coordination)

Pub/sub messaging, contract-net bidding, plan aggregation, reputation,
fairness scheduling.

 Orchestration Multi-LLM  Planner)

Task classification → model routing (small/mid/large). Strategy
synthesis, constraint solving, fallback/hedged inference.

 Intent Layer NL Interface)

Parsing, slot-filling, constraint capture, policy hints, multi-turn context &
disambiguation.

 Safety & Policy

Simulation gates, allow/deny lists, max-notional limits, geo/KYC hooks,
verified inference (zkTLS/MPCTLS.

 Cognitive Cache

TEE-backed private memory of preferences, behaviors, outcomes;
accelerates planning & personalization.

HeyElsa The Crypto Agent Layer  Litepaper) 2

 Observability

Traces, metrics, audit logs, anomaly detection, circuit breakers.

How the three surfaces map onto the stack
Copilot: Intent  Orchestration → A2A  Agents  Execution

Safety, Cache, Grounding applied throughout)

Widget & SDK Partners attach at Intent/Orchestration with their context;
reuse the same A2A, Agents, Execution.

Agent OS Lives inside Agent/A2A layers; provides SDKs, sandboxing,
manifests, reputation, and monetization for hosted agents.

Layers, Policies & Safety

Intent Layer
Role: Natural-language interface that converts user input into machine-
readable intents with constraints.

Responsibilities

Parse NL (text/voice) into structured Intent{verb, objects[], params{}, constraints{},

riskHint} .

Slot filling (amounts, assets, chains, time horizons, targets) with uncertainty
scores.

Constraint capture: risk limits (max slippage, LTV caps), compliance
(geo/KYC, budgets, deadlines.

Context injection from Cognitive Cache (prefs, past approvals, favorite
chains/pools).

Inputs  Outputs

In: NL prompt, wallet context, session policy, cache profile.

Out: Validated intent JSON  confidence; missing-slot prompts if needed.

Key Components

NER  typed entity registry (tokens, chains, protocols).

HeyElsa The Crypto Agent Layer  Litepaper) 3

Canonical schema & versioning (e.g., v3.intent.swap , v2.intent.yield.optimize).

Guardrails (regex, allow-lists, refusal rules for unsafe verbs).

Failure Modes / Handling

Low confidence → ask clarifying question.

Ambiguous asset/chain → propose top-3 disambiguations.

Out-of-policy verb → safe decline with rationale.

 Orchestration Layer
Role: Decides how to satisfy an intent: routes to the right model(s), synthesizes
a plan, assigns agents, and sets up A2A messaging.

Responsibilities

Task classification (complexity, domain, required latency, risk class).

Multi-LLM routing (small/mid/large or toolformer) with cost/latency budget.

Plan synthesis: decompose into steps with pre/post-conditions and
success metrics.

Agent assignment & capability matching; create A2A contracts for
cooperation.

Inputs  Outputs

In: Intent JSON, cache profile, live data pointers (oracles/indexers).

Out: Plan{steps[], dependencies[], SLAs, fallbackPaths[], evalFns[]} + agent roster.

Key Components

Classifier features: task complexity, risk class R0R3, latency budget,
chain/protocol access, wallet approvals needed, MEV exposure,
statefulness needs.

Routing policy (see section below).

Planner STRIPS-like) with constraint solver (fees, gas, liquidity, bridge
risk).

Failure Modes / Handling

No feasible plan → return alternatives (cheaper chain, different pool).

HeyElsa The Crypto Agent Layer  Litepaper) 4

SLA breach predicted → downgrade model, simplify plan, or defer.

A2A Bus (Agent-to-Agent Communication)
Role: Contract-Net style coordination for multi-agent work; pub/sub plus
scheduling and reputation.

Responsibilities

Matchmaking: broadcast sub-tasks; agents bid/commit with price/SLA.

Reputation & scheduling: track success, latency, accuracy; prioritize reliable
agents.

Message semantics: idempotent commands, retries, exactly-once task
receipts.

Key Components

Topics: swap.quote , bridge.route , stake.position , risk.hedge , perps.open , alerts.set .

Message types: rfq , proposal , award , work.start , work.done , work.fail .

Safety: per-task scopes, least-privilege creds, time-boxed leases.

Agent Layer
Role: Composable specialists that execute parts of a plan.

Core Agents

Swap Agent: DEX quoting, split routes, slippage control.

Bridge Agent: Route selection (risk/fee/time), proof checks, stuck-tx
recovery.

Yield Agent: APY scan, IL/risk modeling, auto-compound, vault migrations.

Risk/Hedge Agent: Perps/options, stop-loss/TP, delta hedging.

Perps/NFT/Sniper/Alerts: Venue-specific execution, floor sweeps,
limit/cancel/IOC, event watchers.

Interfaces

Capability manifests (supported chains, tokens, max notional, expected
latency).

Deterministic simulation hooks for pre-trade checks.

HeyElsa The Crypto Agent Layer  Litepaper) 5

Telemetry contract: step outcome, gas used, PnL, confidence, anomalies.

 Execution Layer
Role: Turns approved plans into on-chain transactions safely.

Responsibilities

Pre-audited scripts per protocol (param-bounded).

Transaction simulation (fork or RPC sim) with revert reason capture.

Meta-routing: 0x/CoW/UniswapX/1inch; bridge aggregators; batching.

MEV safety: private relays, back-run protection, non-arb bundle rules.

Settlement & receipt collation; retries with nonces/gas bumping.

Outputs

ExecutionReport{txids[], status, receipts[], realizedSlippage, fees, proofs} .

Cognitive Cache
Role: Private memory for speed and personalization.

Contents

Preferences (risk, fee sensitivity, favored chains/pools).

Behavioral features (time-of-day activity, asset affinities).

Allowances & trusted protocols.

Summarized wallet history (positions, cost basis, PnL bands).

Controls

TTLs & decay, user export/delete, per-scope consent, encryption at rest.

Benefits

Fewer clarifications, better defaults, faster routing.

Safety Layer
Role: Proves what we know, enforces what we allow.

Grounding

HeyElsa The Crypto Agent Layer  Litepaper) 6

Live on-chain state (indexers/full nodes), oracles (prices/liquidity), curated
KB (audits, risk advisories).

Every recommendation/check passes GroundingEngine.validate() .

Policy Engine

Geo/KYC, protocol allow-lists, notional/risk caps, leverage ceilings,
counterparty filters.

Verified Inference

zkTLS / MPCTLS proof adapters for “this insight came from these sources
at time Tˮ without exposing raw logs.

Simulation & Dry-Run

Pre-execution sims with guard conditions and stop-if rules.

 Observability
Role: Make intents→actions traceable and operable.

Whatʼs tracked

Traces with span IDs from intent parse → plan  A2A  execution →
receipts.

SLAs/SLOs per step (p50/p95 latency, success rate, cost).

Audit logs for all policy decisions and escalations.

Anomaly detection (stuck bridge, abnormal slippage, oracle drift).

Surfacing

Operator dashboards, partner webhooks, user-visible receipts.

Classifier Features (expanded)
Task complexity: single-step vs multi-leg, cross-chain, approvals required.

Risk class R0R3 read-only → low-risk swap → leveraged/perps →
protocol-novel/high-risk.

Latency budget: sub-second (quotes) to minutes (bridges) vs deferred
(rebalances).

HeyElsa The Crypto Agent Layer  Litepaper) 7

Chain access: wallet approvals, token allowances, supported
venues/bridges.

Market context: volatility, liquidity depth, MEV risk bands.

User profile: fee sensitivity, risk tolerance, preferred venues.

Routing Policy (multi-LLM)
Fast / transactional (balances, prices, parameter extraction) → small
finetunes (low latency, tool use).

Analytical (yield comparisons, pathfinding, risk scoring) → mid models
with tool-augmented RAG.

Strategic / autonomous (multi-leg plans, portfolio mgmt, hedging) → large
models with planning + constraint solving.

Cost/latency governors: per-request budgets; degrade gracefully under
load.

Grounding Pipeline
Fetch: on-chain (nodes/indexers), oracles (price/liquidity), curated KB
(audits, risk lists).

Validate: cross-source consistency checks, freshness thresholds, quorum
rules.

Attach: include groundingRef in every recommendation/action.

Prove: optional zkTLS/MPCTLS proof artifact for partner/user verification.

Verified Inference
What: Cryptographic proofs that a modelʼs answer was derived from stated
inputs and logs.

How: Proxy TLS via zk/MPC adapter; store digest; emit verifiable receipt
with the response.

Where used: High-stakes advice, partner compliance, dispute resolution.

Fallbacks & Hedging

HeyElsa The Crypto Agent Layer  Litepaper) 8

Model timeouts: reroute to smaller model; summarize; request user
confirmation if confidence < threshold.

Execution hedging: secondary routes/venues; split orders; time-slice in
volatile markets.

Dual-run critical plans: plan via large model, cross-check via mid model;
reconcile conflicts.

Example Intent → Action (concise)
 User: “Bridge 2 ETH to Solana and stake for safest yield.ˮ

 Intent Layer: intent.yield.optimize with amount=2 ETH , dstChain=Solana , risk=low .

 Orchestration: classify R2 , route mid/large model → plan: {swap? no,
bridge via Wormhole, stake Solana pool A, SLAs.

 A2A Bus: RFQs to Bridge Agent  Yield Agent; award best proposals.

 Execution: simulate bridge + stake; private submit; collect receipts.

 Safety: ground rates/APY; enforce policy caps; attach proof.

 Observability: log trace; show user receipts + realized APY baseline.

 Cache: update prefs Solana OK, low-risk yield).

Schemas (abridged)
Intent (v3)

{
 "verb": "yield.optimize",
 "objects": [{"asset":"ETH","amount":"2"}],
 "params": {"dstChain":"solana","risk":"low"},
 "constraints": {"maxSlippageBps"50,"deadlineSec"900,
 "profileRef":"cache://user/123",
 "policyScope":"retail.low",
 "version":"v3"
}

Plan (v2)

HeyElsa The Crypto Agent Layer  Litepaper) 9

{
 "steps":[
 {"id":"s1","type":"bridge","route":"wormhole","from":"ethereum","to":"sol
ana"},
 {"id":"s2","type":"stake","venue":"solend","asset":"SOL","policy":"lowRis
k"}
],
 "dependencies":[["s1","s2"]],
 "sla":{"p95LatencyMs"30000,
 "fallbacks":[{"on":"bridgeFail","route":"portal"}]
}

SLAs / SLOs (suggested)
Intent parse p95  400ms; plan synth p95  1.5s (analytical),  4s
(strategic).

Quote freshness  3s; simulation success  99%; execution success 
98% (with retries).

Max realized slippage ≤ quoted + policy buffer (e.g., 15 bps).

A2A task award latency p95  800ms; agent failure rate  1% per 1k tasks.

Policy Defaults (retail tier)
Max leverage 3; LTV  60%; single-venue exposure  40% per action.

Bridge preference: audited routes; fallback only with user confirm R3.

New protocol cool-down: require audit flag or manual review.

If you want, I can convert this into a Notion page export (as Markdown with
toggles) or wire it into your existing data room structure.

flowchart LR
 IIntent  Context]  C[Complexity Classifier]
 C |Low| M1Small Finetune]
 C |Medium| M2Mid Model]
 C |High| M3Large Model]

HeyElsa The Crypto Agent Layer  Litepaper) 10

 M1  GGrounding Checks]
 M2  G
 M3  G
 G  PPlan  Constraints]

Build once; get execution + safety + distribution.

SDKs: TypeScript/Python — intent schemas, on-chain connectors,
simulation, policy hooks.

Lifecycle: register → advertise capabilities → receive tasks → emit plan
fragments/quotes/tx payloads → execute → report outcomes.

Sandbox: per-agent runtime, quotas, scoped permissions (least privilege),
secrets isolation.

Scheduling: capability matching + live load + reputation.

A2A messaging: pub/sub topics (quote , plan , risk , exec , status) with signed
envelopes.

Agent Manifest (example)

name: yield-agent
version: 1.2.0
capabilities:
 - chain: [base, ethereum, solana]
 - actions: [scan_yield, allocate, compound, exit]
sla: { p95_latency_ms: 1000, success_rate: 0.995 
cost_model: { pricing: per-plan + per-exec }
permissions: { scopes: [simulation.read, protocols.write:yield, quotes.read]
}

Why: multi-specialist coordination for complex workflows.

Protocol

Envelope: signed JSON  msg_id , parent_id , topic , payload , ttl , sig).

Transport: NATS/Kafka-class pub/sub (durable streams), secure WS
for interactive co-planning.

Contract Net: broadcast CFP; agents bid; coordinator selects on
price/latency/reputation.

HeyElsa The Crypto Agent Layer  Litepaper) 11

Consensus: weighted voting on conflicting plans (reputation × recency
× scope-fit).

Idempotency: (intent_id, step_id) .

Trust & Reputation

Metrics: accuracy, timeliness, slippage vs quote, failures, user
feedback.

Decay to favor recency; quarantine/slash malicious or failing agents.

sequenceDiagram
Coordinator→>Agents:* Call for Proposals (intent, constraints)
Agents⟶>Coordinator: Quotes (cost/latency/risk)
Coordinator→>Agents: Award  Plan fragments
Agents→>Execution: Submit executable steps
Execution⟶>Coordinator: Receipts  Telemetry
Coordinator⟶>Agents: Reputation update

Pathfinding: 0x / CoWSwap / UniswapX / 1inch meta-routing; bridge
selector; order-splitting.

Simulation: dry-run with pool state; bounds checks (minOut, gas ceiling,
deadlines).

MEV private relays/bundles; price impact caps; back-run detection.

Accounts: AA/ERC4337; session keys; MPC/HW wallet support.

Risk: dynamic slippage; conditional stops; liquidation buffers.

Receipts: tx hash, logs, realized slippage, fees, route, quotes vs fills.

Idempotency: replay-safe by (user_id, intent_id, step_id) .

flowchart LR
 Plan  S1Simulate On-chain State]
 S1  S2MEV Risk Check]
 S2  S3Limits: Slippage, Gas, Notional]
 S3 |Pass| TXSubmit Tx via Private Route]
 S3 |Fail| ERRAbort  Explain]

HeyElsa The Crypto Agent Layer  Litepaper) 12

Content: prompt history, wallet behaviors (chains, protocols, risk), strategy
outcomes.

Store: vector DB (embeddings) + key/value features.

Use: disambiguation, defaults, constraint inference, few-shot exemplars.

Privacy: TEE-backed; per-user scope; opt-in research sharing; differential
privacy on aggregates.

Excalidraw brief: circular cache feeding router with “known preferences ,ˮ “risk
profile ,ˮ “recent strategies .ˮ

Sources: on-chain nodes/indexers; oracles (price/TVL; curated KB
(audits/safety).

Validators: cross-source reconciliation, freshness, anomaly detection.

Policy engine: denylist, chain allow-lists, max notional, KYC/geo hooks.

Proofs: zkTLS/MPCTLS adapters to prove gateway authenticity.

Explainers: every block/reject returns a human-readable reason.

Modes: execute now; schedule; autopilot (bounded by policies).

Features: swaps, bridging, staking, perps (roadmap), copy trading,
prediction markets, yield optimizer, sniping/limits, NFT trade & limit.

Personalization: risk bands, chain prefs, fee sensitivity, favorites.

Outcomes: $100M total volume; 30M prompts; higher retention via
context.

Widget (drop-in)

Embed: <iframe src="https://app.heyelsa.ai/widget?partner=XYZ&theme=dark" />

Prefill context (asset/chain/flow)

Callbacks: onQuote , onTx , onError , onComplete

SDK (agents & flows)

Intent schema, plan API, simulation, submitTx, receipts

Policy templates, sandbox scopes, quota mgmt

Theme/tone overrides

HeyElsa The Crypto Agent Layer  Litepaper) 13

import  Elsa } from "@elsa/sdk";

const elsa = new Elsa({ apiKey: process.env.ELSA_KEY ;

const intent = {
 type: "yield.optimize",
 amount: "500",
 asset: "USDC",
 constraints: { chain: "base", maxSlippageBps: 30 
};

const plan = await elsa.plan(intent);
await elsa.simulate(plan.id);
const receipt = await elsa.execute(plan.id);

Verification: conformance tests (correctness/latency), replay suite,
adversarial sims.

Runtime: CPU/mem quotas, topic rate limits, cost ceilings.

Monetization: per-plan/per-exec pricing USDC/$ELSA, rev share on
partner volume.

Metrics: intent→plan→exec funnel, p50/p95, slippage distribution, failure
taxonomy, per-agent SLOs.

Tracing: distributed trace IDs across router/agents/execution.

Alerts: anomaly detection (slippage spikes, oracle drift), circuit breakers.

Audit: immutable logs for compliance & partners.

Wallets: MPC  HW; ERC4337 AA; session keys with ceilings.

Exec: allow-list bridges/routers; private flow; expiring quotes; gas caps;
reorg-aware confirmations.

Inference proofs: zkTLS/MPCTLS verifier endpoints.

Data privacy: encryption at rest; TEE for cognitive cache; opt-in telemetry.

Router: p95  300ms (low/med),  900ms (high).

Plan→Simulate: p95  1.2s (single-chain),  2.5s (cross-chain).

HeyElsa The Crypto Agent Layer  Litepaper) 14

Quote accuracy:  99.0% within bounds.

Execution success:  99.2% after retries.

Throughput: 200500 intents/sec (horizontally scalable).

More users → richer prompts & outcomes → better finetunes → higher
plan/exec quality → more partner conversion → more users.

flowchart LR
 UUsers & Partners]  D[Prompts  Outcomes Data]
 D  TFinetuning  Policy Updates]
 T  QHigher Plan/Exec Quality]
 Q  AAdoption & Volume]
 A  U

Retail: “Bridge 2 ETH to Solana and stake best yieldˮ

sequenceDiagram
User→>Copilot: "Bridge 2 ETH to Solana and stake best yield"
Copilot→>Router: classify + route (med/high)
Router→>Planner: multi-step strategy
Planner→>A2A call for proposals (bridge,yield)
BridgeAgent⟶>Planner: quotes + routes
YieldAgent⟶>Planner: APY  risk + lockup
Planner→>Safety: simulate + policy + oracle checks
Safety⟶>Planner: OK w/ constraints
Planner→>Execution: submit (private relay)
Execution→>Chains: txs
Chains⟶>Execution: receipts
Execution⟶>Copilot: confirmations + proofs + explainer

iFrame Widget

 Paste snippet, set partner key, theme/tokens/chains.

 Subscribe to callbacks for analytics/incentives.

SDK

 Install, create intents, plan/simulate/execute, display receipts.

 Apply policy templates (max notional, allow-listed routers, geo limits).

HeyElsa The Crypto Agent Layer  Litepaper) 15

Host Your Agent

 Publish manifest, pass conformance tests, get sandbox scopes.

 Receive A2A tasks; earn per plan/exec.

POST /v1/intents
{
 "type":"swap",
 "user":"0x...",
 "params":{"sell":"ETH","buy":"USDC","amount":"1.0","chain":"base"},
 "constraints":{"maxSlippageBps"30,"deadlineSec"90
}

GET /v1/plans/{intentId}
returns steps, quotes, risk, agents, policy gates

POST /v1/execute/{planId}
returns tx receipts, route, realized slippage, gas

mutation {
 createIntent(input:{
 type: YIELD_ALLOCATE,
 asset: "USDC",
 amount: "500",
 chain: BASE
 }) { id status }
}

System Layers: rectangle bands for Intent, Orchestration, Agents,
Execution; sidecar “Safety ;ˮ circle “Cognitive Cache .ˮ

A2A Market: central “Coordinatorˮ node; multiple Agents bid; arrows for
CFP/quotes/award.

Safety Gates: funnel: Plan  Sim  Policy  MEV  Submit.

Flywheel: circular loop of Users  Data  Finetune  Quality  Adoption.

HeyElsa The Crypto Agent Layer  Litepaper) 16

Problem
Crypto is powerful but unusable at scale.

Too many chains, tools, and workflows

High cognitive load for basic actions

Manual execution leads to poor outcomes

Automation exists, but isnʼt accessible

Most users donʼt need more protocols — they need better execution.

Solution
Elsa introduces an AI-first execution layer.

Users express intent.

Elsa executes it.

Natural language → onchain actions

Optimized routing across chains and protocols

AI agents manage trading, yield, and risk

Automation without sacrificing control

Elsa abstracts complexity while preserving transparency.

Product Stack

B2C: Elsa Copilot
Swap, bridge, stake, borrow

Perpetual trading and copy trading

Yield optimization and portfolio automation

Smart alerts and agent-driven execution

Untitled 1

B2B: Elsa Infrastructure
Widget and iframe integrations

SDKs for apps and wallets

Agent execution APIs

Revenue-sharing distribution model

Business Model
Elsa is usage-driven, not speculation-driven.

Revenue sources:

Transaction fees on execution

AI agent commissions

B2B SDK and widget licensing

Inference and execution fees

As execution volume grows, revenue scales naturally.

Token Overview
Parameter Value

Token $ELSA

Total Supply 1,000,000,000

Decimals 18

Network Base

$ELSA is a utility token, powering execution, inference, and access.

Utility of $ELSA
$ELSA is the economic backbone of Elsa.

Fee Discounts

Untitled 2

Reduced execution fees for holders and stakers

Feature Access
Unlock premium agents (copy trading, sniping, cognitive cache)

Gas Abstraction
Gas-free transactions within Elsa using $ELSA

Inference & Execution
AI model inference

Onchain agent execution

B2B SDK and widget usage

Utility scales with real platform usage.

Token Allocation & Vesting
Category Allocation Vesting

Team 7% 12m cliff, 24m linear

Foundation 34.490% 20% TGE, 10m cliff, 24m linear

Community 40% 20% TGE, 48m linear

Pre-Seed 1.4% 12m cliff, 24m linear

Seed 9.11% 12m cliff, 24m linear

Liquidity 8% 100% at TGE

Community-first allocation with long-term alignment.

Roadmap Snapshot

Up to Q2 2025 (Completed)
Public beta live

Core DeFi Copilot launched

Untitled 3

$1M daily volume

300K MAUs, 700K signups

Monetization enabled

Q3–Q4 2025
Perpetuals via Hyperliquid

Copy trading and sniping agents

Yield vaults and automation

Mobile apps (iOS & Android)

Multi-agent orchestration

$ELSA Token Generation Event

Token utility activation

2026
Fully autonomous portfolio management

Tokenized crypto indices

Agent Builder SDK

Automated strategy marketplace

Cross-chain execution kits

B2B scale across wallets and apps

Design Philosophy
Execution > speculation

Utility before governance

Demand-backed token economics

AI that acts, not just advises

Untitled 4

Elsa is built for scale, automation, and real usage.

Untitled 5

